If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+19x-46=0
a = 2; b = 19; c = -46;
Δ = b2-4ac
Δ = 192-4·2·(-46)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-27}{2*2}=\frac{-46}{4} =-11+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+27}{2*2}=\frac{8}{4} =2 $
| 7-x/3=x/2+9= | | 1/2x+3/4=1/6x+1/3 | | 16x=8+4x | | (2x+10)(4x-3)=0 | | 19-6x=71 | | 6d-89=2d/3+7 | | 5r-183=4r/5+6 | | 8x+12=10+11x | | 2x/3+3=4x-57 | | 50+14x=4x | | 2x/3=3+4x57 | | 4d-118=7d/8+7 | | 7x-13=132 | | 3n/4+6=5n-79 | | x/2+7=6x-4 | | 5c/8=3c-114 | | 5(x-11)+13(x-2)=4x-2(3-x) | | 3(x+8)=2(8x-1) | | 28=21s | | 2d/3=5d-52 | | 2q/3=5q-91 | | 3x-1=8- | | 6p-301=5p/8 | | 3d/4=3d-63 | | 3a5+65=25 | | u-9.4=1.1 | | v-6.88=8.2 | | 2(x+6)^2=-8 | | y+9/4=5 | | 3/5x+3/4=1/5x+1/4 | | 6.25=x/5 | | 5w-27=-7(w+9) |